به گزارش گروه علم و آموزش ایرنا از روابط عمومی دانشگاه تهران، دکتر عباسعلی صابری عضو هیأت علمی دانشکدگان علوم دانشگاه تهران در این باره گفت: برای ساخت این مواد مرکّب از افزونههای نانوساختار (نانولولههای کربنی چنددیواره، گرافن و بورون نایتراید) در زمینه پلیمری (پلیپروپیلن) استفاده شده است.
وی با تاکید بر اینکه این تحقیق نتیجه تلاش یک گروه پژوهشی است، افزود: این گروه همچنین یک نظریه واحد جهانشمول، در چارچوب یک مدل تراوش تعمیمیافته، برای توصیف مشاهدات تجربی خود توسعه دادهاند. مطابق این نظریه جدید، تراوش گرما در مواد مرکّب در کلاس جهانی مسائل تراوش با دو توان بحرانی قرار میگیرد و از این نظر مشابه رسانش الکتریکی در الکترولیتها یا شبکهای از مقاومتهای الکتریکی و خازنها است.
عضو هیأت علمی دانشکده فیزیک دانشگاه تهران تاکید کرد: چشمانداز وسیعتر این پژوهش، توسعه نسل جدیدی از مواد مرکّب سبک با رسانندگی الکتریکی و گرمایی قابل تنظیم و بالاست که میتواند کاربردهای متنوعی در صنایع هوایی، صنایع خودروسازی، محافظت از امواج الکترومغناطیس، بستهبندی قطعات الکترونیک، خمیرهای گرمایی و مواد ترموالکتریک داشته باشد.
صابری اظهار داشت: حل نظری و تجربی این مساله چالشی چند ده ساله در مورد تراوش گرما و الکتریسیته در مواد مرکّب (کامپوزیت)، توسط پژوهشگران دانشگاه تهران و دانشگاه صنعتی شریف، اکنون نوید نسل جدیدی از مواد پیشرفته سبکوزن با رسانندگی الکتریکی و گرمایی بالا را میدهد.
بهبود خواص یک ماده از طریق افزودن مقادیر اندکی از یک یا چند ماده دیگر به آن و ساخت یک ماده مرکّب (کامپوزیت)، قدمتی به اندازه تاریخ بشر دارد. به عنوان مثال میتوان از کاهگل یا فولاد ضدزنگ نام برد. کاهگل که در آن استحکام مکانیکی خاک رس از طریق افزودن کاه به خاک تقویت میشود یا فولاد ضد زنگ که در آن خواص فیزیکی و شیمیایی آهن از طریق افزودنیهایی نظیر کربن بهبود مییابد.
میزان بهبود خواص ماده مرکّب معمولاً به صورت مستقیم با مقدار ماده افزودنی متناسب است، امّا در این میان، رسانندگی الکتریکی مواد مرکّب ویژگی بسیار جالب و منحصر به فردی از خود نشان میدهد که به آن اصطلاحاً تراوش (percolation) میگویند.
اگر به یک ماده ذاتاً عایق الکتریکی (نظیر اغلب پلیمرها و پلاستیکها) مقادیری از یک ماده رسانای الکتریکی (مثلاً ذرات فلزی) اضافه شود، تا یک آستانه مشخصی از مقدار ماده رسانا (آستانه تراوش الکتریکی)، ماده مرکّب همچنان نارسانا باقی میماند اما با افزایش مقدار بارگذاری ماده رسانا و عبور از آستانه تراوش، ماده مرکّب به طور ناگهانی رسانا میشود. برای توصیف این پدیده، مدل فیزیکی ساده و در عین حال قدرتمند و جهانشمولی به نام مدل تراوش وجود دارد که از مقیاسهای زیراتمی تا ابعاد کیهانی صادق بوده و قادر به توصیف بسیاری از پدیدههای طبیعی دیگر نظیر انتشار بیماری یا پخش شایعه در جامعه تا آتشسوزی جنگلها و گسترش تومورهای سرطانی در بدن نیز هست.
باوجود مشابهتهای فراوان میان فیزیک رسانش الکتریسیته و گرما در مواد، وجود یا عدم وجود آستانه تراوش گرمایی در مواد مرکّب چندین دهه است که به موضوع بحث داغ میان پژوهشگران تبدیل شده است.
اغلب مطالعات تجربی قبلی صورتگرفته در این زمینه به این نتیجه رسیدهاند که رسانش گرما در یک ماده ذاتاً رسانای ضعیف گرما، هیچگاه با افزودن یک ماده که رسانای خوب گرما باشد، بهبود نمییابد.
مطالعات اندکی نیز که در آنها بهبود رسانش گرما در مواد مرکّب گزارش شده است با مدل ساده تراوش قابل توصیف نیستند و این افزایش رسانندگی گرمایی را در مقادیر بارگذاری بسیار زیاد و غیرکاربردی (بیش از ۵۰ درصد وزنی ماده افزودنی) به دست آوردهاند. همچنین برخی مطالعات نظری اساساً تراوش گرمایی در مواد مرکّب را نامحتمل دانستهاند.
نتایج این پژوهش در جدیدترین شماره (جلد ۹، شماره ۴ دسامبر ۲۰۲۲) مجلّه معتبر بررسیهای فیزیک کاربردی (AppliedPhysics Reviews) با ضریب تأثیر ۱۹.۵۲۷ (ضریب تأثیر پنج ساله ۲۰.۵۶ به چاپ رسیده است که به دلیل اهمیت مقاله به عنوان Featured Article توسط ادیتورهای مجله هایلایت شده است.
نظر شما